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Upper Bounds to the Overlap of Approximate and
Exact Wavefunctions
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One measure of how accurately an approximate wavefunction approximates
the true wavefunction is the overlap of the two functions. In general the true
wavefunction is not known so this overlap cannot be directly calculated. We
derive two methods from the t expansion of Horn and Weinstein to bound from
above the magnitude of the overlap of an approximate wavefunction with the
ground state. The first method relies on the ability to divide the Hamiltonian into
a base problem and a perturbation. The second method is more general and seems
much more promising.

1. INTRODUCTION

If energy is the only criterion used to measure the accuracy of a wave-
function then one may use the variational theorem to assert that the wavefunc-
tion which gives the lowest energy is the best approximation to the ground-
state. However, it is well known that energy-optimized wavefunctions need
not predict the most accurate values for other observables. Another way to
measure the accuracy of an approximate function is by its overlap with the true
wavefunction—this is not biased towards any observable. An approximate
normalized wavefunction, c, can be expanded in terms of the normalized
eigenfunctions, fn, of the system’s Hamiltonian:

c 5 o
`

n51
cnfn (1)

where cn 5 ^c.fn& and may be complex. The infinite sum of their square
magnitudes, .cn.2, is unity. Since the true wavefunction is usually not known,
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this overlap can only be approximated or bounded. A lower bound to the
magnitude of the overlap is easily derivable using the variational theorem
(Christoffersen, 1989):

.c1.2 $
E2 2 ^H &
E2 2 E1

(2)

where E1 and E2 are the energies of the ground and first-excited states. An
approximate lower bound, which is suspected to be very good if .c1. is high,
is (Christoffersen, 1989):

.c1. $ 1 2
^H & 2 E1

2(E2 2 E1)
(3)

provided ^H & # E2. Equation (3) is always higher than Eq. (2), but not
necessarily better since it is approximate. Lower bounds to .c1. cannot achieve
their full usefulness unless they are accompanied by an upper bound as well.
For high values of .c1., unity can serve as an upper bound; however, for low
values, unity does not provide for a tight bracketing of .c1.. We now derive
two different ways to get upper bounds to .c1..

2. THE t EXPANSION

The results in this paper rest on the t expansion (Horn and Weinstein,
1984). Letting H be the Hamiltonian operator and c be a trial function, they
define a new normalized function parameterized by t:

c(t) 5
e2tH/2c

^c.e2tH.c&1/2 (4)

They state that c(t) converges to the ground-state, f1, as t approaches infinity
provided there is non-zero overlap of the ground state and the trial function.
This can be seen if c is expanded in terms of the unknown eigenfunctions,
fn, of H:

c(t) 5
e2Ht/2 o cnfn

^c.e2Ht.c&1/2 5 o cne2Ent/2fn

^c.e2Ht.c&1/2 →
t→`

f1 (5)

As t increases, the low energy states have more weight compared to the high
energy states until finally the ground state overwhelms all other states as t
approaches infinity.

The energy can be written as a function of t, which is guaranteed to
converge from above to the true ground-state energy as t approaches infinity.
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E(t) 5 ^c(t).H.c(t)& 5
^c.e2tH/2He2tH/2.c&

^c.e2tH.c&
(6)

That E(t) is a decreasing function can be shown by differentiating (6) with
respect to t since ^H 2& $ ^H &2:

­E(t)
­t

5 1^e2tH/2c.H.e2tH/2c&
^e2tH/2c.e2tH/2c& 2

2

2
^e2tH/2c.H 2.e2tH/2c&

^e2tH/2c.e2tH/2c&
, 0 (7)

Horn and Weinstein presented the following equality for any operator A:

^e2tH/2Ae2tH/2&
^e2tH &

5
^Ae2tH &
^e2tH &

(8)

That (8) is incorrect in general can easily be shown using 2 3 2 matrices;
however, we show this differently and obtain a useful result. Note that for
A 5 H, however, (8) is true since H and e2tH commute. We divide an arbitrary
Hamiltonian, H, into a base problem, H0, and a perturbation, P. We define
c0 and E0 to be the base problem ground-state eigenfunction and eigenvalue,
respectively. All expectation values are calculated with c0. Using (8) with
A 5 H we have:

E(t) 5
^e2tH/2H0e2tH/2&

^e2tH &
1

^e2tH/2Pe2tH/2&
^e2tH &

5 E0 1
^Pe2tH &
^e2tH &

(9)

We next use the variational principle in (9). If we assume that the ground
state of the perturbed Hamiltonian is non-degenerate, then we have equality
in (10) only if H and H0 have the same ground state (this does not, however,
imply that H 5 H0, i.e., P 5 0)

E0 1
^e2tH/2Pe2tH/2&

^e2tH &
# E0 1

^Pe2tH &
^e2tH &

(10)

This implies

P(t) 5
^e2tH/2Pe2tH/2&

^e2tH &
#

^Pe2tH &
^e2tH &

(11)

where equality holds only if the perturbation does not disturb the ground
state of the base problem. It seems that this inequality does not generalize
for arbitrary functions or operators.

3. BOUNDS FOR BASE PROBLEM GROUND STATES

We again divide the Hamiltonian, H, into a base problem, H0, and a
perturbation, P. We further assume that the ground-state eigenvalue, E0, and
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normalized eigenfunction, c0, of the base problem are known (knowledge of
the full spectrum is not necessary).

We begin with the Cauchy–Schwarz inequality:

.^c0.Pe2tH.c0&. # ^c0.P2.c0&1/2^c0.e22tH.c0&1/2 (12)

We can then bound the magnitude of P(t) using (12) in (11)

.P(t). # ^c0.P2.c0&1/2 ^c0.e22tH.c0&1/2

^c0.e2tH.c0&
(13)

The ratio of exponential expectation values in Eq. (13) can be simplified by
expanding c0 in terms of the unknown normalized eigenfunctions, fn , of the
perturbed Hamiltonian. As t approaches infinity, the first term in the summa-
tions of (14) dominates so that

^c0.e22tH.c0&1/2

^c0.e2tH.c0&
5

1o .cn.2e22tEn2
1/2

o .cn.2e2tEn
→
t→`

1
.c1.

(14)

We then have a bound on the magnitude of P(t) in the limit of t approaching
infinity, i.e., a bound on the magnitude of the ground-state expectation value
^P&gs 5 ^f1.P.f1&.

.^P&gs. 5 lim
t→`

.P(t). #
^c0.P2.c0&1/2

.c1.
(15)

If the observable of P is known (e.g., from experiment), then (15) can be
used to bound .c1. for the ground state of any base problem.

The energy can also be used to derive bounds. Using the following
expression for the ground-state energy of the perturbed Hamiltonian,

E(t) 5
^c0.He2tH.c0&
^c0.e2tH.c0&

5 E0 1
^c0.Pe2tH.c0&
^c0.e2tH.c0&

(16)

and (15) we have:

.E 2 E0. #
^c0.P2.c0&1/2

.c1.
(17)

which also gives an upper bound to .c1..

4. BOUNDS FOR ARBITRARY FUNCTIONS

In the following we work with only positive Hamiltonian operators.
This is not a fundamental problem since the energy of every molecular system
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can be bounded below by the united atom theorem (Thirring, 1978). Every
atom can in turn be bounded below by summing the energy levels of the
corresponding hydrogenic atom using the Pauli exclusion principle. The lower
bound can then be subtracted from the molecular Hamiltonian to create a
positive operator.

Given a trial function c we define .c1(t). 5 .^c.c(t)&. as an approximation
to .c1. 5 .^c.f1&.. As c(t) approaches f1, .c1(t). approaches .c1.. That .c1(t).
decreases is shown by differentiation with respect to t and the monotonicity
of E(t):

2^e2tH &3/2 ­.c1(t).
­t

5
^He2tH &
^e2tH &

2
^He2tH/2&
^e2tH/2&

5 E(t/2) 2 E(t/4) , 0 (18)

Thus .c1(t). bounds .c1. from above. We now derive an upper bound to .c1(t)..
Expand the trial function c as a linear combination of the (we assume)
complete set of unknown eigenfunctions, fn, of H (with corresponding eigen-
values En).

.c1(t). 5
^e2tH/2c.c&

^e2tH/2c.e2tH/2c&1/2 5
o
n

.cn.2e2tEn/2

1on .cn.2e2tEn2
1/2 (19)

The numerator and denominator of (19) can be bounded from above and
below using Taylor polynomials of different orders for e2x: an even-order
polynomial results in an upper bound to e2x and an odd-order polynomial
gives a lower bound. This is valid for x $ 0, i.e., tEn $ 0. Since the
Hamiltonian is assumed positive, En is always positive, so we must restrict
t $ 0. We form the following upper bounds u(n, t) and lower bounds l(n, t)
to .c1(t)..

l(n, t) 5
o

2n21

k50
(2t/2)k^c.H k.c&/k!

1o
2n

k50
(2t)k^c.H k.c&/k!2

1/2 # .c1(t).

#
o

2n22

k50
(2t/2)k^c.H k.c&/k!

1 o
2n21

k50
(2t)k^c.H k.c&/k!2

1/2 5 u(n, t) (20)

Since .c1(t). is a decreasing function, the upper bound to .c1(t). is also an
upper bound to .c1.. One must be careful with the upper bound, u(n, t), since
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the denominator will be non-positive for large t, thus destroying the bound
due to division by zero or imaginary numbers. Note that l(n, t) is a lower
bound only to .c1(t). and not .c1.. To illustrate the bounds, Fig. 1 shows l(n,
t) and u(n, t) compared with .c1(t). for n 5 1–8 for c 5 221/2(f1 1 f2) for
a particle in a box of length p bohr. We define t 5 Tn as the point past which
u(n, t) is no longer valid.

At this point we should point out that the trial function c is not entirely
arbitrary; it must be carefully chosen to ensure that the expectation values
of powers of the Hamiltonian exist (Huang, 2000; Marmorino, 2000). In
addition, such integrals are much more difficult than the typical variational
integrals, although this is not an insurmountable problem (Cioslowski, 1987;
Huang, 1999; Huang, 2000).

5. CONCLUSION

We have introduced two methods to obtain upper bounds to the magni-
tude of the overlap of a trial function with the ground-state wavefunction.
The first method relies on the ability to separate the Hamiltonian into a

Fig. 1. Lower bounds l(n, t) and upper bounds u(n, t) to .c1(t). for a particle-in-a-box wavefunc-
tion, c, are plotted. As n increases, the bounds better envelope the overlap of c with the ground
state. .c1(t). converges to .c1. 5 221/2. Note that u(n, t) gives upper bounds to .c1., but l(n, t)
does not give lower bounds to .c1..
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base problem and a perturbation for which the ground-state eigenvalue and
eigenfunction of the base problem are known. The resulting formulae require
extra information, such as the ground-state expectation value of the pertruba-
tion or the ground-state energy. The second method is suitable for almost
any function and requires no extra information. The only difficulty lies in
computing the expectation values of powers of the Hamiltonian.

Note added in proof: Equations (2–3) were first derived by Eckart [C.
Eckart. The theory and calculation of screening constants. Phys. Rev. 36, 878
(1930)]. To save space we avoided mentioning the extensive amount of
previous work done in this area since our method is completely different,
utilizing the t-expansion. Weinhold gave an excellent review of other methods
many years ago. [F. Weinhold, Criteria of accuracy of approximate wave-
functions. J. Math. Phys. 11, 2127 (1970)].
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